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Credit scoring remains one of the most important subjects in financial risk management. Although the methods in this 
field have grown in sophistication, further improvements are necessary. These advances could translate in major gains 
for financial institutions and other companies that extend credit by diminishing the potential for losses in this process. 
This research seeks to compare statistical and artificial intelligence predictors in a credit risk analysis setting, namely 
the discriminant analysis, logistic regression, artificial neural networks and random forests. In order to perform this 
comparison, these methods are used to predict the default risk for a sample of companies that engage in trade credit. 
Pre-processing procedures are established, namely in the form of a proper sampling technique to assure the balance 
of the sample. Additionally, multicollinearity in the dataset is assessed via an analysis of the variance inflation factors 
and the presence of multivariate outliers is investigated with an algorithm based on robust Mahalanobis distances.  
After seeking the most beneficial architectures/settings for each predictor category, the final models are then compared 
in terms of several relevant key performance indicators. This allows for conclusions to be drawn regarding the 
performance of statistical and artificial intelligence approaches. 
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1. Introduction 

Companies acquire funds not only from specialized 
financial intermediaries but also from the respective 
suppliers (Fabbri & Menichini, 2010). This practice is 
denominated trade credit and occurs frequently in the 
B2B market when buyers delay payments to suppliers for 
merchandise and/or services. If credit is approved for a 
certain client, there is always the possibility that this client 
will not honor the agreement to repay the amount in 
question. On the other hand, if credit is denied, it is 
possible that a potentially profitable client was handed 
over to rival companies. Therefore, both of these issues 
must be taken into consideration when deciding on 
whether to extend credit to any applicant.  
Credit risk, in general, is a topic of the utmost importance 
in financial risk management, being a major source of 
concern for financial and banking institutions (Khashman, 
2010). In the last decades, quantitative methods to 
manage credit risk have grown in sophistication. The end-
goal is to separate good credit applicants from bad ones. 
The criterion used in this classification is the ability of the 
applicants to repay the full amount of the loan. Usually, 
this is achieved by feeding a predictive model with past 
customer data, thus finding the relationships between the 
clients’ characteristics and the potential for default 
(Huang, Liu, & Ren, 2018). There is substantial research 
material on this topic, as only a small improvement in 
prediction accuracy may lead to large gains in profitability 

(Kvamme, Sellereite, Aas, & Sjursen, 2018).  

Until recently, to build these credit scoring models, the 
sole solution was to employ statistical models. The linear 
discriminant analysis and logistic regression are among 
the statistical techniques widely used for this purpose 
(Baesens, Setiono, Mues, & Vanthienen, 2003).  
However, the emergence of artificial intelligence (AI) 
methods provided an opportunity for credit risk 
professionals. There are numerous studies showing that 
machine learning tools like artificial neural networks, 
decision trees and support vector machines, present a 
chance to improve on the prediction accuracy of 
statistical models with regards to credit risk (Vellido, 
Lisboa, & Vaughan, 1999; Huang, Chen, Hsu, Chen, & 
Wu, 2004; Ong, Huang, & Tzeng, 2005).  
Despite significant developments in terms of newer 
classifiers, the literature on credit risk has not kept pace 
with the breakthroughs in predictive learning (Lessmann, 
Baesens, Seow, & Thomas, 2015; Jones, Johnstone, & 
Wilson, 2015). Indeed, more recent techniques such as 
random forests and generalized boosting have been 
explored by a limited number of studies, although some 
sources report them as superior to previous methods 
(Jones et al., 2015). It is therefore imperative to further 
study these new techniques to understand how these 
compare to older and more established methods of credit 
scoring with respect to performance and applicability. 
This research seeks then to offer a comprehensive view 
of how statistical and artificial intelligence predictors 
compare at credit scoring. More specifically, this study 
focuses on the discriminant analysis, logistic regression, 
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artificial neural network and random forest methods. In 
order to assess the robustness of these techniques, the 
predictors are used to determine the default risk for a 
novel sample composed of companies that engage in 
trade credit.  

2. Theoretical Framework 

2.1.   Linear Discriminant Analysis 

The linear discriminant analysis (LDA) may be defined as 
a statistical technique utilized to classify an observation 
into one of several a priori groupings depending on the 
observation’s individual characteristics (Altman, 1968). 
There are some limitations regarding the validity of this 
method. It is dependent on stringent assumptions, 
namely that all variables must present a normal 
distribution and be mutually independent (Huang et al., 
2004; Šušteršič, Mramor, & Zupan 2009). 
Considering a certain feature vector with 𝑠 dimensions, it 
is important to know what linear function of these values 
best separates the groups in question. This function 
corresponds to the expression that follows. 

𝑓(𝑥) =  𝜆1𝑥1 + ⋯ + 𝜆𝑠𝑥𝑠 

In this formula, 𝜆𝑖 and 𝑥𝑖 represent the discriminant 

coefficient for explanatory variable 𝑖 and the value for 

indicator 𝑖, respectively. In the LDA, the goal is to find the 
values for these coefficients that maximize the 
differences between the groups as measured by a given 
objective function. The original method proposed by 
Fisher in 1936 sought to find the coefficients that 
maximized the ratio of the explained variance to the 
unexplained variance. This corresponds to the F-ratio, 
which may be computed with the following expression: 

𝐹 =  
∑ 𝑁𝑔(�̅�𝑔 − �̅�)2𝐺

𝑔=1

∑ ∑ (𝑦𝑝𝑔 − �̅�𝑔)2𝑁𝑔

𝑝=1
𝐺
𝑔=1

 

This formulation considers a total of 𝐺 groups in a 

dataset, with 𝑔 and 𝑦𝑝𝑔 being the index for the groups and 

the observation 𝑝 of group 𝑔, respectively. Additionally, 

𝑁𝑔 represents the number of cases in each group, while 

�̅�𝑔 is the mean for group 𝑔 and �̅� is the overall sample 

mean. Analyzing this expression, one can observe that 
its numerator corresponds to the sums-of-squares 
between groups and the denominator to the within-
groups sums-of-squares (Altman, 1968).  
Once the coefficients have been computed to maximize 
the discriminant power of the function, it is possible to 
calculate the score for each observation in the sample 
and assign it to a certain group accordingly.  
The LDA technique was first applied to credit scoring by 
Edward Altman in 1968. This approach is designated by 
Altman’s Z-score and served as the basis for the future 
applications of discriminant analysis in credit scoring. 
Altman’s method implies assigning each instance to the 
group it resembles the most. The comparisons are 
measured by a chi-square value and classifications are 
made based upon the relative proximity of the instance’s 
score to the various group centroids (Altman,1968). 

 

2.2.   Logistic Regression 

The logistic regression (LR) is one of the most 
widespread statistical tools for classification problems in 
general (Ong et al., 2005). Much as the LDA, it is a 
technique used in problems with categorical dependent 
variables displaying linear relationships with the 
explanatory variables. Despite the similarities, it should 
be stressed that the logistic regression model does not 
assume the populations in classification problems to be 
normally distributed. Unlike the LDA, the logistic 
regression can deal with various distribution functions 
(Press & Wilson, 1978; Ong et al., 2005), and is thus, 
arguably, a better option for credit scoring tasks. 
Assuming the case of a binary logistic regression that is 
used to determine if an event 𝐸 will happen (e.g. 

company bankruptcy), then 𝜋(𝑥) may be defined as the 
probability of 𝐸 occurring given the n-dimensional input 

vector 𝑋. As there are only two possible outcomes, 1 - 

𝜋(𝑥) is equal to the probability of the event 𝐸 not 
happening. The linear form of the LR model may be 
obtained by applying the natural algorithm to the odds 
ratio, which is equivalent to the logit of 𝜋(𝑥). This leads to 
the following mathematical formulation: 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1 −  𝜋(𝑥)
 =  𝛼 + 𝛽𝑋 

A different formulation of the logistic regression is usually 
obtained by relating the probability of a given event, 𝐸, 

happening, conditional on the vector 𝑋 of observed 

explanatory variables, to the vector 𝑋 (Press & Wilson, 
1978). This corresponds to expression 4, which may be 
also obtained by manipulating the former formula.  

𝜋(𝑥) =  P(𝐸|𝑥) =  
1

1 + 𝑒−𝛼−𝛽𝑋
 

The output of this expression describes a sigmoid curve, 
taking values between zero and one. After the parameter 
𝛼 and the vector of coefficients 𝛽 are calculated, it may 
be used as a predictor. The maximum likelihood method 
that is commonly used in statistics can be applied to 
estimate these parameters.  

2.3.   Artificial Neural Networks 

Artificial neural networks (ANNs) started being studied as 
a possible credit risk predictor in the nineties (Tang et al., 
2018) and since then have become a mainstream tool 
utilized by several financial institutions and other 
companies.  
Neural networks are composed of several artificial 
neurons, which can be regarded as processing units. 
These elements are interconnected via synapses that 
convey values, with each one of these connections 
having an assigned weight. When a neuron performs a 
computation, the first step is to do a weighted sum of the 
inputs, afterward, the result is used in the transfer 
function that will calculate the neuron’s output. Sigmoid, 
linear and step functions are common transfer functions 
(Angelini, di Tollo, & Roli, 2008). 
All neural networks require the partitioning of the input 
data into training, validation and testing subsets, which 
have distinct purposes. The training subset is used in the 
learning stage of the models, while the validation subset 
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assures that every change in the models’ parameters 
truly reduces the overall error. In the absence of 
validation, the models may overfit by modeling noise in 
the training data. Finally, the testing subset provides an 
independent way to assess the predictive ability of the 
models.   
The first artificial neural network considered in this 
research is the multilayer perceptron (MLP), which is the 
most frequently used type of neural network in credit risk 
assessment (West, 2000), having been tested in various 
studies. The backpropagation rule is a widely used 
technique to update the weights of these networks (Zhao 
et al., 2015; Huang et al., 2018). Backpropagation 
algorithms are supervised learning tools. These 
techniques begin by initializing the weights with small 
random values (West, 2000). Subsequently, the gradient 
of the error’s variation with respect to changes in the 
weights is computed, and these weights are modified in 
the direction which reduces the overall error of the 
network.  
The other artificial neural network tested in this research 
is a radial basis function (RBF) neural network. The first 
layers of these models just carry the data directly to the 
ensuing layers. A fundamental aspect of these networks 
is that the hidden layers are entirely composed of 
neurons with radial basis transfer functions, such as 
Gaussian functions (Ayala & Coelho, 2016). The outcome 
of a radial basis function is dependent on three 
parameters: the received input vector 𝑋, the center of the 

respective neuron 𝑐𝑗 and the spread 𝜎𝑗. The training that 

RBF networks undergo allows for the determination of the 
appropriate number of hidden layers and also the best 
centers and widths for each hidden neuron (Chen, Wang, 
Liu, & Wu, 2018). These parameters will be the ones that 
allow for a minimization of the network’s overall error. 
The estimation of the centers can be done via a clustering 
algorithm. The k-means clustering technique, for 
example, is one of the common and intuitive methods of 
this type. This algorithm considers a set of initial centers 
and then iteratively changes the centers to minimize the 
total within cluster variance (Hastie, Tibshirani, & 
Friedman, 2008). First, all the input data points are 
attributed to the closest center, which effectively 
corresponds to dividing the data into separate subsets. 
Afterward, each center is recalculated to correspond to 
the vector of the means for the features of the data points 
composing the respective subset.  
Despite the great promise of ANNs in general, there is a 
major disadvantage that should be noted. Neural 
networks work as black boxes, which basically means 
that it is very difficult to interpret how the results are 
achieved (Abdou & Pointon, 2011). This may severely 
restrict the use of such techniques.  

2.4.   Random Forest 

This research also includes the testing of the random 
forest (RF), which is a much newer artificial intelligence 
technique. A random forest is a homogenous ensemble 
predictor. Its predictions are dependent on the individual 
outputs of various decision trees (DTs). The aggregation 
of the many outputs obtained into a single outcome may 
be done by averaging over all the output values when 

predicting a numerical outcome or by performing a vote 
when predicting a class (Breiman, 1996). There is 
evidence that this procedure of model combination can 
lead to increased accuracy (Paleologo, Elisseeff, & 
Antonini, 2010; Finlay, 2011; Lessmann et al., 2015). 
Assuming it is used for classification purposes, a random 
forest is analogous to a voting committee. Each decision 
tree reaches a prediction or classification and then the 
results of all trees are checked to find what is the output 
of the majority. It is implied in this logic that the decision 
trees reach different results and consequently display 
distinct structures. A fundamental challenge when 
building a RF is to ensure decision tree diversity. The 
diversification of decision trees is achieved via two 
mechanisms, bootstrap aggregating (bagging) and 
random feature selection. 
Bootstrap aggregating is a procedure that allows each 
tree to use a different sample as input without partitioning 
the data. These replicate datasets, each consisting of a 
given number of cases, are drawn at random, but with 
replacement, from the original dataset (Breiman, 1996).  
In contrast, the random feature selection mechanism 
dictates that each node is assigned a random subset of 
variables that it may use in the node splitting procedure. 
This random selection of features at each node 
decreases the correlation between the decision trees, 
causing a reduction in the random forest error rate (Bryll, 
Gutierrez-Osuna, & Quek, 2003; Archer & Kimes, 2008).  
Random feature selection has been demonstrated to 
perform better than bagging alone (Dietterich, 2000), 
namely in problems with several redundant features 
(Archer & Kimes, 2008). This strategy has also been 
proven to help prevent the overfitting phenomenon. 
However, after the random forest is applied, its results are 
not easily interpretable, which is inconvenient when it is 
critical to understand the interactions between the 
variables of the problem (Breiman, 2001). 

2.5.   Key Performance Indicators 

The models in the following sections are evaluated in 
terms of several key performance indicators (KPIs). 
These include the percentage of correctly classified 
(PCC) instances, which measures the accuracy of the 
techniques. The sensitivity and specificity are also 
presented, which measure the imperviousness of the 
models to type I and type II errors, respectively. 
Assuming a null hypothesis that the company applying for 
credit will not default next year, then the sensitivity is 
equal to the true positive rate and the specificity 
corresponds to the true false rate.  
The area under the curve (AUC) is also computed for all 
models. The AUC corresponds to the area under the 
receiver operating characteristic (ROC) curve. Assuming 
binary outcomes, this curve plots the sensitivity and 
specificity observed for different thresholds. Finally, the 
Gini Index is included. This coefficient is a chance 
standardized alternative to the AUC that measures how 
well the models separate the existing groups. Greater 
values for the AUC and Gini Index are desirable, as these 
are indicative of a higher discriminatory ability. It should 
be noted that, in cases of conflicting performance ranks, 
these last two measures are prioritized in this work. 
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3. Input Data Collection, Analysis and Treatment  

3.1.   Input Data Collection Process 

The data used in the models was obtained from the Orbis 
financial database. Bureau van Dijk (BvD), a Moody’s 
Analytics Company, is responsible for the capture and 
treatment of the data present in this database. The 
access to the database is provided in exchange for a 
subscription fee, albeit there is a free trial version 
available online at BvD’s website. 
The financial information used in this research was 
extracted for a list of Galp’s clients and concerns the 
fiscal year of 2016. Additionally, the information regarding 
the clients’ financial status in the fiscal year of 2017 was 
retrieved from the internal data kept by Galp.  

3.2.   Description of the Input Variables 

In order to obtain the most explanatory input variables, 
several financial and non-financial indicators were 
extracted from the database or computed from the 
exported information. This data includes raw financials, 
equity ratios, growth tendencies, operational ratios, the 
maturity of the companies, profitability ratios, sectors of 
activity and structural ratios. The final indicator included, 
company status in 2017, corresponds to the dependent 
variable for all the models. In this variable, all companies 
are assigned to the mutually excluding categories: 

• Active: The company remains in operation; 

• Insolvent: The company has filed for bankruptcy; 

• Undergoing a Special Revitalization Process (SPR): 
The company has been given a protection against 
creditors status, preventing an imminent insolvency;  

• Non-compliant: The company has failed to pay for the 
products and/or services provided by Galp. 

3.3.   Aggregation of company outcomes  

The company status variable poses a challenge, as it 
must be decided whether to aggregate the negative 
categories under a broader class of bad companies, 
merge just some of these, or keep all of them separate.  
Although there are several possible groupings for the 
distinct strategies, a preliminary analysis is enough to 
understand that some seem counterintuitive. The 
discriminant analysis, as well as the artificial neural 
networks and other predictive models, offer similar 
predictions for close inputs, as such, it is detrimental to 
merge classes that are characterized by very dissimilar 
inputs. Therefore, one must take this factor into 
consideration when deciding on the best course of action 
regarding the aggregation of classes. 
Both insolvent and SRP companies display similar very 
poor financial indicators. Hence, this pair of classes is the 
most logical choice to undergo merging. Non-compliant 
companies display better financial indicators in 
comparison with the other two negative categories, 
although these indicators remain deteriorated in relation 
to active companies.  
Upon experimenting with the aggregation strategies, it 
became evident that it is beneficial to keep only two 
possible outcomes. This is due to the similarity of the 
inputs obtained for insolvent, SPR and non-compliant 
classes. Furthermore, the main goal of any creditor is to 

understand if there is a significant risk of default for any 
given potential debtor, and it is notorious that the 
applicants included in these three classes present such a 
risk. Considering this, it was ultimately decided to pursue 
a two-outcome aggregation strategy, merging the 
insolvent, SPR and non-complaint categories in a 
broader class of bad companies. The active companies 
remain in a separate class of good companies. 

3.4.   Sampling Procedure 

Although the majority of credit scoring research has not 
focused on the input samples’ characteristics, the size 
and balance of such datasets have a tremendous 
potential to affect the performance of the predictive 
models. This latter characteristic refers to the proportion 
of the groups in the sample. Ideally, considering a binary 
outcome scenario, half the instances would belong to one 
group and the remaining to the other. Some methods are 
more sensitive than others to changes in the input data’s 
size and structure, but both statistical and AI techniques 
are affected by these features to varying degrees. 
There are two options to manipulate the balance of a 
sample, under-sampling by reducing the number of 
instances of the majority group or over-sampling through 
an increase of the cases in the minority class. In this 
research, it was decided to under-sample the majority 
class, which encompasses the cases of good companies. 
Although over-sampling may produce better results 
according to Crone & Finlay (2012), this dataset proved 
extremely unbalanced due to a pronounced deficiency of 
bad companies, making it difficult to employ this 
technique. Considering that the minority class is much 
smaller, over-sampling would cause certain cases in this 
class to be repeated several times. This repetition may 
lead the models to overfit, thus degrading the results.   
After selecting a subset of instances from the good 
companies’ class, the near perfectly balanced dataset 
described in Table 1 was obtained.   

 Table 1 - New distribution of the cases by the categories. 

The slightly bigger number of good companies in relation 
to the total number of bad companies is due to a few 
detected cases of duplicated corporations in the data. 
This issue was solved by studying the causes of each 
repetition and assigning these cases to a sole category. 

3.5.   Missing and Invalid Data  

Another important aspect to be addressed relates to the 
presence of missing values in the dataset. The usual 
reasons for missing values in credit scoring problems are 
that those values were already missing in source data or 
were out of the theoretical allowed range. The latter 
motive is quite common in these situations due to typos 
or transcription errors (Angelini et al., 2008). On the other 
hand, these lapses may be due to computational errors. 
After analyzing the dataset, two main types of missing 
data were detected, NA and NS lapses. The first one 

Group Subgroup Observations Percentage of total 

Good Active 1001 50.2% 

Bad 

Insolvent 701 35.2% 

SPR 265 13.3% 

Non-compliant 27 1.4% 
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(5) 

Figure 2 - Scatter plot of the robust Mahalanobis distances for 
the bad companies. 

corresponds to data that is truly missing, NA being an 
acronym for not available in the database. On the other 
hand, NS stands for not significant and is used when 
indicators expressed as percentages take values near 
zero. As NS cases do not truly represent missing data, 
these were replaced by null values in the sample. This 
approximation allows for the use of such instances.  

3.6.   Correlation Analysis 

The multicollinearity problem refers to the existence of 
strong correlations between independent variables in a 
dataset. Many authors have stated before that the logistic 
model becomes unstable in the eventuality of a strong 
dependence among predictors, as it seems that no single 
variable is important when all the others are in the model 
(e.g. Aguilera, Escabias, & Valderrama, 2006). This 
weakness is shared with the LDA method.  
A common technique used in the detection of 
multicollinearity involves the computation of the variance 
inflation factor (VIF). Variance inflation factors over 10 are 
usually considered to be indicative of multicollinearity. 
However, certain authors point out that this threshold is 
very lenient. Indeed, a VIF of 10 for a given independent 
variable implies that 90% of its variability is explained by 
the remainder indicators. Another typical threshold is a 
maximum VIF of 5 (Craney & Surles, 2002). This is a 
more conservative approach that was deemed adequate, 
as certain variables displayed VIF values nearing 10 and 
would not be excluded with the former criterium.  
The correlation analysis indicated that there are clear 
signs of multicollinearity in the original data, with several 
VIF values exceeding the threshold defined. In order to 
solve this problem, the variables were removed iteratively 
until no VIF values were over 5. This removal procedure 
was performed giving preference to the variables that are 
more correlated. The final dataset obtained displays no 
indications of multicollinearity.  

3.7.   Outlier Analysis 

According to Filzmoser (2004), the basis for multivariate 
outlier detection is the Mahalanobis distance. This metric 
measures the distance of each instance in the data to a 
central point in multivariate space. The key feature of this 
measure is that it considers the correlations between 
variables, as well as the respective scales (Brereton & 
Lloyd, 2016). The Mahalanobis distances (MDs) may be 
computed with following expression: 

𝑀𝐷 =  √(𝑥𝑖 − �̅�)𝑆−1(𝑥𝑖 − �̅�)𝑇 

This formula considers that 𝑥𝑖 is the vector for a given 

data instance, while �̅� is the arithmetic mean of the 
dataset and 𝑆 represents the sample covariance matrix.  
However, outliers are known to distort the observed 
mean. A small cluster of outliers may impact the mean in 
such a way that these are no longer detected as aberrant 
instances. Additionally, the distortion brought on by the 
outliers may be so high that normal instances are wrongly 
labeled as outliers. These occurrences are commonly 
referred to as masking and swamping, respectively. In 
order to prevent them, it was decided to examine the 
presence of outliers by computing MDs with geometric 

medians (GMs). This indicator is one of the most common 
robust estimators of centrality in Euclidean spaces 
(Fletcher, Venkatasubramanian & Joshi, 2008). 
In order to compute this parameter, the Weiszfeld 
algorithm is employed. This is an iterative procedure that 
with the appropriate initialization values converges to the 
point that presents the lowest sum of Euclidean distances 
for all the sample instances.  
The computation of the GMs does not tolerate missing 
values. As such, it is necessary to replace these lapses 
with usable data. The techniques used for this purpose 
are called imputation procedures. After analyzing the 
sample’s pattern of missing data and assessing if 
monotonicity is present, it was decided to proceed with a 
fully conditional specification imputation method. 
This procedure warrants the separation of the sample into 
two groups, which contain exclusively good and bad 
companies. Since the whole sample contains two distinct 
populations with very different characteristics, this 
splitting is fundamental to assure that the MDs are 
computed with the GMs of the class (good or bad) to 
which each instance belongs. 
As normality tests proved that various indicators do not 
follow normal distributions, it was opted to use an 
alternate exclusion criterion to the comparison of the MDs 
with a quantile of the chi-squared distribution. There is no 
guarantee that the MDs follow this specific distribution in 
the absence of multivariate normality. By building scatter 
plots with the sample ID numbers and the robust MDs, it 
is possible, via visual inspection, to detect any potential 
outliers. These plots are displayed in Figures 1 and 2. 

 

 

Figure 1 - Scatter plot of the robust Mahalanobis distances for 
the good companies. 
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Some instances in these scatter plots standout for being 
clearly anomalous. It was decided to label as potential 
outliers all the cases with robust Mahalanobis distances 
above 1000. These points are marked in red for easier 
identification. In order to comprehend to what extent 
these flagged instances are aberrant, there was an 
analysis of the indicators presented by these companies. 
This study reinforced the idea that such corporations 
display altered values for several indicators.  
Considering that the results of the robust MDs analysis 
were confirmed for good and bad companies by the 
subsequent findings of extreme values for several 
indicators in the flagged cases, the decision was taken to 
label these nine instances as outliers and remove them 
from the sample. The outlier detection technique 
implemented in this section was partially based on the 
work of Semechko (2019). Further details are provided in 
the reference section. 

4. Model Development 

4.1.   Linear Discriminant Analysis 

The discriminant analysis model was applied to the data 
with IBM SPSS Statistics 25. Considering the capabilities 
of the software, alternative discriminant analysis models 
were computed using different combinations of stepwise 
techniques and entry/removal criteria.  
After experimenting with various selection rules, it was 
found that the best results were obtained by including in 
the model any explanatory variables with a minimum F 
value of 3.00 and excluding those with F values inferior 
to 1.00. 
Following the computation of the discriminant 
coefficients, it was possible to assess the relative 
importance of the independent variables included in the 
model. The standardized coefficients are particularly 
important to assess the discriminating ability of the 
explanatory variables, as the standardization allows for 
the comparison of variables expressed in distinct scales. 
The five variables with the most predictive potential were 
found to be the shareholder equity ratio, Cash flow / Total 
assets, return on assets using net income, credit period 
and the major sector of activity, by descending order of 
discriminating ability.  
The key performance indicators were then computed for 
the best discriminant analysis model obtained. These are 
listed in Table 2. 

Table 2 - KPIs for the linear discriminant analysis model. 

PCC Sensitivity (%) Specificity (%) AUC Gini Index 

80.0 88.9 67.7 0.863 0.726 

4.2.   Logistic Regression 

The logistic regression model was also applied with IBM 
SPSS Statistics 25. There is no need to use a multinomial 
logistic regression, as the considered output is 
dichotomous. Therefore, a binary logistic regression 
model was implemented. 
The first step in the development of this model is 
choosing the input variable selection procedure. There 
are a variety of stepwise techniques available in this 

software, namely forward selection and backward 
elimination procedures.  
After careful experimentation, the best results were 
obtained using the forward selection stepwise 
techniques. The maximum number of iterations before 
model termination was kept at 20, the default setting, as 
overriding this configuration did not improve the results. 
In terms of the thresholds used in the stepwise methods, 
the best results were obtained when the probability for the 
score statistic must be less than 0.01 for entry and over 
0.03 for removal. The option to include a constant in the 
LR model remained selected.  
Furthermore, the user interface allows for the definition of 
the classification cutoff directly, which was kept at 0.5. 
Although it is relevant to study the model’s performance 
under different thresholds, this will be addressed with the 
computation of the remaining KPIs, namely the AUC. 
Table 3 presents all of these performance metrics, which 
are relative to the most robust logistic regression model 
achieved. 

Table 3 - KPIs for the logistic regression model. 

PCC Sensitivity (%) Specificity (%) AUC Gini Index 

89.9 93.8 83.5 0.926 0.852 

4.3.   Multilayer Perceptron 

The multilayer perceptron model was applied in the 
neural networks’ module of IBM SPSS Statistics 25, 
which offers various options regarding the way the ANNs 
are structured and the methods through which the results 
are computed. 
First, the partitioning of the data may be set. This involves 
specifying the fractions of the sample that are allocated 
to the training, validation and testing datasets. Secondly, 
the structure of the MLP network may be stipulated in 
terms of the number of hidden layers, the activation 
function to be used in these layers and the transfer 
function of the output layer.  
Finally, there are different options for the learning 
algorithm to be employed in the networks’ development. 
Considering these possibilities, four different MLP neural 
networks are proposed, which are detailed in the 
following table. 

Table 4 - Features of the MLP networks tested. 

ANN 
Number 

of hidden 
layers 

Number 
of 

hidden 
neurons 

Hidden 
layers’ 

activation 
function 

Output 
layer’s 

activation 
function 

Training 
algorithm 

MLP 1 1 
Automatic 
selection 

Sigmoid 
Identity 
function 

Scaled 
conjugate 
gradient 

MLP 2 2 
Automatic 
selection 

Sigmoid 
Identity 
function 

Scaled 
conjugate 
gradient 

MLP 3 1 
Automatic 
selection 

Hyperbolic 
tangent 

Identity 
function 

Scaled 
conjugate 
gradient 

MLP 4 2 
Automatic 
selection 

Hyperbolic 
tangent 

Identity 
function 

Scaled 
conjugate 
gradient 
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Regarding the partitioning of the data, several 
combinations were selected in accordance with the best 
practices in the literature. The first training-testing-
validation ratio, 700:300:0, is the most popular partition, 
being used by numerous authors (e.g. Angelini et al., 
2008 and Pacelli & Azzollini, 2010), being also the default 
setting in SPSS. The second option, 600:150:250, is used 
by Lai, Yu, Wang, and Zhou (2006). Lastly, the third 
partitioning, 600:200:200, which varies only slightly in 
relation to the second alternative, is based on the work of 
Addo et. al, 2018.  
For the comparison between methods to be fair, one must 
be careful when setting the partitioning strategy in SPSS. 
The percentage of cases that are attributed to each set 
may be defined directly in the software’s user interface 
for a given network. However, this introduces the 
potential for chance to influence the results. As the cases 
are randomly sampled from the dataset to build the 
training, testing and validation sets, the results obtained 
will be strongly influenced by this arbitrary selection. By 
not guaranteeing the replicability of the partition, the 
comparison between the different architectures cannot 
yield meaningful results.  
This issue essentially arises because some companies 
are more difficult to classify than others. Not all instances 
present overwhelmingly positive or negative indicators. 
These cases are the ones that contribute the most to the 
errors committed by the models. If a given partition 
randomly samples more of these instances than the 
others, the models using it would tend to display poorer 
results, although this partitioning strategy is not 
necessarily inferior to the others. The same reasoning 
applies to comparisons between different models that use 
the same partitioning strategy. A given model may 
perform better solely because it was evaluated with a test 
set containing a higher percentage of instances that are 
easier to sort.  
In order to overcome this flaw, a strategy was employed 
that mitigates the potential for the models’ results to be 
influenced by chance. Firstly, three partitioning variables 
were defined beforehand. These variables contain values 
that determine the placement of each instance (i.e. 
whether it is used for training, testing or validation). The 
variables’ values are generated in accordance with the 
partitioning strategy desired and used for the testing of all 
the MLP models for that given strategy. This essentially 
assures that the networks are comparable if the results 
were obtained for the same partitioning option, as all of 
these models were developed with similar initial 
conditions.  
However, when comparing networks that used different 
partitioning strategies, which correspond to different 
auxiliary partitioning variables, there is still the potential 
for chance to affect the analysis. Therefore, it was 
deemed necessary to do multiple runs of the algorithm 
that generates these variables and then compute the 
average values for the KPIs.  
By averaging out all the performance metrics across the 
iterations (according to the MLP model and partitioning 
option considered in each iteration), it was possible to 
compute the results that are presented in Table 5. 

Table 5 - Average values of the KPIs after 5 runs for each 
combination of MLP model and partition. 

Partitioning ANN PCC 
Sens. 
(%) 

Spec. 
(%) 

AUC 
Gini 

Index 

700:300:0 

MLP 1 88.10 93.68 79.32 0.940 0.881 
MLP 2 88.14 93.44 79.92 0.942 0.884 
MLP 3 88.32 94.08 79.28 0.949 0.898 
MLP 4 89.12 93.74 81.74 0.951 0.902 

600:150:250 

MLP 1 88.02 91.86 81.22 0.947 0.894 
MLP 2 88.04 91.98 81.10 0.939 0.878 
MLP 3 89.74 93.28 83.28 0.957 0.914 
MLP 4 90.74 94.54 84.04 0.959 0.917 

600:200:200 

MLP 1 89.02 93.88 81.00 0.946 0.892 
MLP 2 88.52 93.38 80.38 0.937 0.875 
MLP 3 89.44 94.44 81.08 0.950 0.899 
MLP 4 90.20 94.42 83.14 0.954 0.909 

Analyzing the values of the KPIs displayed in this table, 
which are all relative to the testing set, it can be 
understood how each MLP network performs for all the 
partitioning strategies considered. After comparing the 
models, it was considered that the most robust network 
is MLP 4 trained with a 600:150:250 training-testing-
validation ratio. This artificial neural network displays the 
best value for the AUC, as well as the greatest Gini index.  
Finally, a sensitivity analysis is performed that computes 
importance estimates for each independent variable in 
the model. These results imply that the most important 
indicator is the shareholder equity ratio, followed by the 
Cash flow / Total assets. The variations of the cash flow 
and equity are considered the third and fourth most 
relevant variables, respectively.  

4.4.   Radial Basis Function Neural Network 

The RBF neural network model was applied in the neural 
networks’ module of SPSS Statistics 25. In the same way 
as the MLP models, there is the option to define the 
percentages that are assigned to the training, validation 
and testing sets. Additionally, there are two alternatives 
for the activation function used in the hidden layers, which 
are ordinary and normalized radial basis functions.  The 
remaining customizable settings are the number of 
elements in the hidden layers and the overlap among 
hidden units. The overlapping factor is a multiplier applied 
to the width of the radial basis functions.  
As SPSS offers algorithms that define the optimal number 
of units in the hidden layers and the best values for the 
overlapping factors, these features were not set 
manually. Thus, the software automatically defined the 
most advantageous architecture regarding these 
characteristics. Considering that there is no mechanism 
in place to select the transfer function in the hidden layers 
that achieves the best results, two alternative RBF 
networks are studied that differ solely in this aspect. 

Table 6 - Features of the RBF networks tested. 

Characteristics RBF 1 RBF 2 

Number of elements in 

the hidden layers 

Set automatically Set automatically 

Overlapping factor Set automatically Set automatically 

Activation function for the 

hidden layers 

Normalized RBF  Ordinary RBF 
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Table 8 - KPIs for the different splitting algorithm options. 

 

The partitioning schemes defined in the previous section 
were also considered for the development of the RBF 
models. Similarly to what was done before, in order to 
mitigate the variability in the results that can happen 
because of the random sampling procedure used to build 
the various sets in SPSS, two partitioning variables were 
computed and used iteratively to build the networks and 
collect the KPIs. By averaging out all the performance 
metrics across the iterations, it was possible to obtain the 
results presented in Table 7. 

Table 7 - Average values of the KPIs after 5 runs for each 
combination of RBF model and partition. 

Partitioning ANN PCC Sens. 
(%) 

Spec. 
(%) 

AUC Gini 
Index 

700:300:0 
RBF 1 83.54 87.36 77.68 0.892 0.784 

RBF 2 81.64 88.02 72.00 0.884 0.768 

600:150:250 
RBF 1 81.02 84.54 75.12 0.889 0.778 

RBF 2 81.28 86.76 72.02 0.892 0.785 

600:200:200 
RBF 1 81.88 84.84 76.94 0.890 0.780 

RBF 2 82.38 85.94 76.22 0.891 0.782 

It may be concluded from the results displayed in Table 7 
that RBF 2 under the second partitioning option (60% 
Training, 15% Testing and 25% Validation) outperforms 
the remaining alternatives.  

4.5.   Random Forest 

The random forest method was applied in MATLAB 
R2018b. This model can be obtained by using the 
TreeBagger function available in the software, which 
builds an ensemble of bootstrapped decision trees for 
either classification or regression purposes. This 
function also selects a random subset of predictors to use 
at each decision split as is described by Breiman (2001) 
in the original random forest algorithm.  
In terms of the settings used, the model is set for 
classification purposes, as the outcome considered is 
categorical. The surrogate splits option is activated to 
handle cases of missing data. If the value for the best split 
is missing, this technique assesses to what extent 
alternate splits resemble the best split. Afterward, the 
most similar split is used, instead of the original optimal 
division. 
Additionally, optional arguments are included in the 
function to allow for the assessment of the variables’ 
explanatory power and the computation of the predicted 
class probabilities. The probabilities are especially 
important, as these are used in the latter plotting of the 
ROC curve and subsequent computation of the AUC.   
The TreeBagger function offers two possibilities for the 
algorithm that selects the best split at each node, a 
curvature test (CT) and an interaction-curvature test 
(ICT). In order to understand which of these algorithms 
would provide the best results, two distinct random forest 
models were applied differing in the splitting techniques. 
The relevant KPIs obtained for both models are displayed 
in Table 8. 
 

The random forest using the curvature tests provided the 
best predictions in terms of AUC, Gini Index and 
sensitivity. Although the percentage of correctly classified 
cases is slightly inferior to the one presented by the 
model trained with the interaction-curvature tests, a 
higher AUC is prioritized. A critical parameter that must 
also be defined is the number of decision trees contained 
in the ensembles. The results displayed so far were 
obtained with models composed of 50 decision trees, 
which is a common setting for random forest models. 
However, it must be analyzed if there are gains to be had 
by adding more trees or, on the other hand, there is an 
excess of DTs that does not translate into a reduction of 
the prediction error and increases the computation time 
unnecessarily. In order to do this, the out-of-bag 
prediction error is plotted for a variable number of 
decision trees in the graph present in Figure 3. 

Analyzing Figure 3, one can observe that, when the total 
number of grown trees is small, there is a rapid decrease 
of the out-of-bag prediction error with additional DTs in 
the ensemble. However, these gains in accuracy are 
progressively smaller, which causes the out-of-bag 
prediction error to stabilize around an ensemble of 50 
trees. The error rate observed for a RF containing 50 
decision trees is 0.1319, whereas an ensemble of 60 DTs 
displays a rate of 0.1314. As this reduction is hardly 
significant, it was opted to keep the number of decision 
trees at 50. 
Analyzing the estimates of the predictors’ importance, it 
is relevant to point out that the variable with the most 
explanatory power is the shareholder equity ratio, which 
displays a remarkable score in comparison with the other 
indicators. The credit period and the Cash flow / Total 
assets indicators display the second and third highest 
importance estimates, respectively. Certain measures, 
namely the profit per employee and gearing, are also 
important to the robustness of the model. 

5. Benchmarking the models 

By compiling the results obtained so far in terms of the 
relevant KPIs, it is now possible to compare the credit 
scoring approaches. For each category of predictive 
methods, the best model in the developmental stage was 
considered for benchmarking purposes. Table 9 exhibits 

Splitting 
algorithm 

PCC Sens. 
(%) 

Spec. 
(%) 

AUC Gini Index 

CT 96.46 98.59 94.32 0.997 0.994 

ICT 96.61 98.49 94.73 0.996 0.992 

Figure 3 - Out-of-bag prediction error obtained for a variable 
number of decision trees. 
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the values for the performance metrics, as well as a 
ranking based on the AUC and Gini Index displayed.  

 Table 9 - KPIs for all the credit scoring models implemented. 

Analyzing Table 9, it can be observed that the random 
forest model is ranked as the best credit scoring model, 
displaying the highest AUC and Gini Index, while also 
presenting a remarkable overall accuracy. Over 95% of 
all instances are assigned correct predictions, with 
98.59% of all future good companies being classified as 
such. In second place, the MLP neural network displayed 
impressive KPIs, although not up to par with the ones 
obtained with the random forest. On the other hand, the 
RBF neural network was the overall worst AI model 
considered, being even outranked by the logistic 
regression model. 
Regarding the statistical methods, the results fall in line 
with what was observed in other benchmarking studies. 
The discriminant analysis proved to be the least 
predictive model of all the credit scoring methods tested, 
which may be a result of the violation of this models’ 
assumptions in terms of normality and mutual 
independence regarding the explanatory variables. The 
logistic regression is ranked as the third best predictor, 
behind the MLP neural network and the random forest. 
This model provides accurate predictions in almost 90% 
of the cases and demonstrates good sensitivity and 
specificity, which translate into low rates of type I and type 
II errors. Despite this, the LR model fell short on the more 
robust KPIs, namely the AUC and Gini Index, which 
caused it to be ranked behind some of the AI models.    
Considering these results, it can be concluded that the 
MLP neural network and the random forest outperformed 
the statistical approaches in the credit scoring 
experiment. However, the logistic regression proved to be 
a robust predictor, displaying a high level of accuracy and 
presenting values for other performance measures that 
come close to the results of the AI alternatives. This is 
coherent with the recent rise in popularity of the LR 
method, which is a solid compromise in terms of 
prediction performance and ease of implementation. 
Furthermore, the logistic regression also permits an 
intuitive interpretation of the model’s parameters, 
overcoming the black-box syndrome of AI predictors.  

6. Conclusions and Further Work  

6.1.   Further Work 

Regarding the pre-processing of the input dataset, 
several measures were taken to assure the quality of the 
data, which necessarily impacts the performance of the 
predictive models. However, posterior studies may adopt 
distinct methodological approaches to address some 
limitations of the current research. Specifically, the 

detection of the multivariate outliers could be improved in 
terms of the rule utilized in the labeling of these instances.  
As the input data in the sample failed the normality tests, 
it was not possible to proceed with the typical criterium of 
labeling as outliers any observations with robust 
Mahalanobis distances beyond a given quantile of the 
chi-squared distribution. The detection of the multivariate 
outliers relied then upon the visual examination of the 
scatterplots with the robust MDs for each observation in 
the dataset. Consequently, the labeling process lacks 
objectivity. Therefore, it would be beneficial to develop a 
more sophisticated outlier labeling rule that is applicable 
to multivariate non-normal data.  
Further research could also attempt to mitigate the 
detrimental effects of the missing values in the dataset. 
Some of the predictor methods applied in this study 
simply discard such cases, which reduces the size of the 
sample utilized. In order to deal with this situation in the 
context of the computation of the robust MDs, a fully 
conditional specification imputation procedure was put in 
place. However, the imputed dataset could not be used 
in the development of some of the models, which limited 
the applicability of this sample to the pre-processing 
stage of this project. Thus, additional studies could 
attempt to employ multiple imputation procedures that are 
compatible with the implementation of the credit scoring 
methods.  

6.2.   Conclusions 

This research allowed for the comparison of statistical 
and AI predictors, adding significantly to the academic 
literature by designing a credit scoring experiment using 
a novel dataset with financial and other relevant data for 
a selection of Portuguese companies. Credit scoring 
methods were successfully implemented based on this 
information and used to distinguish between good and 
bad applicants in the timespan of a year.  
As the statistical predictors are particularly susceptible to 
multicollinearity in the data and to the presence of outlier 
instances, there was a thorough pre-processing of the 
dataset prior to the implementation of the models. This 
procedure included a correlation analysis to remove 
certain indicators that displayed high VIF values, which 
corresponded necessarily to the ones presenting the 
highest dependencies upon the remaining independent 
variables. Regarding the outlier issue, there was a 
detection technique in place based on robust 
Mahalanobis distances that allowed for the identification 
of certain aberrant instances in the multivariate space. 
Additionally, a proper sampling technique was defined in 
order to build a balanced dataset, as the base data was 
extremely unbalanced.  
After experimenting with different settings and 
architectures, it was possible to select the most robust 
models for each category of predictors. This allowed for 
the comparison of the KPIs computed for statistical and 
AI alternatives. The benchmarking study completed 
found that the artificial intelligence methods outperformed 
the more conventional statistical approaches. The 
random forest model demonstrated the most potential, 
followed by the MLP neural network. The RBF neural 
network and the logistic regression were the fourth and 

Model PCC Sens. 
(%) 

Spec. 
(%) 

AUC Gini 
Index 

Rank 

LDA 80.0 88.9 67.7 0.863 0.726 5 

LR 89.9 93.8 83.5 0.926 0.852 3 

MLP 90.7 94.5 84.0 0.959 0.917 2 

RBF 81.3 86.8 72.0 0.892 0.785 4 

RF 96.5 98.6 94.3 0.997 0.994 1 
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third most robust models respectively, whereas the 
discriminant analysis was the worst performing model 
overall.  
Regarding the statistical approaches, the results are 
coherent with the findings of previously published 
benchmarking research articles. The discriminant 
analysis is dependent on strict assumptions in terms of 
normality and mutual independence regarding the input 
variables, which was a contributing factor to its disuse 
among credit risk professionals and may explain the poor 
performance obtained in this experiment. The logistic 
regression proved to be a robust predictor, displaying a 
high level of accuracy and presenting values for other 
performance measures that come close to the results of 
the AI alternatives. This is consistent with the recent rise 
in popularity of the LR method, which demonstrated to be 
a solid compromise in terms of prediction performance 
and ease of implementation.  
The random forest models, along with the MLP artificial 
neural networks, display tremendous potential in the 
credit scoring field. In contrast with the statistical 
techniques, these methods can model hidden non-linear 
relationships between the explanatory variables and the 
dependent variable, being also more robust to 
multicollinearity and the presence of outliers. Besides 
these advantages, these methods do not make 
assumptions regarding the probability distributions of the 
input data. These factors may have contributed to the 
observed superiority of the AI approaches. The major 
drawback of these alternatives continues to be the black-
box syndrome, which makes the interpretation of the 
results almost impossible. This may restrict the use of 
such models in certain settings due to regulatory 
requirements. 
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